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Many, though surely not all, mathematical structures can successfully be depicted 
by theories in (infinitary, many-sorted) first-order logic. The principal concern 
of this paper is to show systematically, following the lines of our previous papers, 
how to quantize a wide and important class of mathematical structures of first- 
order description, namely, the class of mathematical structures delineated by so- 
called limit theories. By way of example, not only every equational theory (e.g., 
the theory of groups and homomorphisms), but also the theory of partially ordered 
sets and order-preserving mappings and that of Banach spaces and contractive 
linear transformations are limit theories, so that they are susceptible of logical 
quantization. 

0. ~ T R O D U C T I O N  

The most tractable mathematical structures are sets endowed with opera- 
tions subject to certain equations. They are what are called algebraic structures 
in the narrowest sense, and their general theory was denominated universal 
algebra, for which the reader is referred to Gr~itzer (1979). Groups and rings 
are typical examples of algebraic structures in this strict sense, but fields are 
not. It was Lawvere (1963) who first introduced a functorial viewpoint into 
universal algebra. For functorial treatments of universal algebra, the reader 
is referred to Borceux (1994, Vol. 2, Chapter 3), Pareigis (1970, Chapter 3), 
or Schubert (1972, w 

A much wider class of mathematical structures has been studied by 
model theorists. "In particular, the model theory of finitary first-order logic 
is flourishing, for which the reader is referred to Chang and Keisler (1973) 
or Hodges (1993). For the model theory of infinitary first-order logic, the 
reader is referred to Dickmann (1975). The close relationship between (infini- 
tary, many-sorted) first-order logic and sketches of Ehressmann (1968) and 
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his school, as is discussed by Makkai and Par6 (1989, Chapter 3), enables 
us to treat first-order structures functorially. In particular, limit sketches are 
of their logical counterpart, namely, limit theories. The duality between limit 
sketches and limit theories grows into the trinity of limit sketches, limit 
theories, and locally presentable categories, for which the reader is referred 
to Makkai and Par6 (1989) and Ad~-nek and Rosicky (1994). The theory of 
locally presentable categories was initiated by Gabriel and Ulmer (1971). 
The category of partially ordered sets and order-preserving mappings and 
that of Banach spaces and contractive linear transformations are locally 
presentable categories, while the category of fields and homomorphisms 
is not. 

It is highly interesting to note that Grothendieck's sites, which are the 
central concept in his functorial approach to algebraic geometry (Artin et al., 
1972), are limit sketches, so that Grothendieck toposes, consisting of models 
of sites as limit sketches, are locally presentable categories. In a previous 
paper (Nishimura, 1996) we showed how to quantize Grothendieck toposes 
logically. The principal concern of  this paper is to show that the method can 
be generalized to limit sketches without much difficulty. At present we do 
not know how to generalize the method to sketches in general, nor are we 
sure whether general sketches admit of logical quantization at all. 

The organization of this paper goes as follows: Section 1 is devoted to 
a review of infinitary logic, sketches, accessible categories (a generalization 
of locally presentable categories), and their trinity. After limit sketches are 
Booleanized in Section 2, the relationship between two Booleanizations of 
limit sketches with respect to possibly distinct complete Boolean algebras 
is discussed in Section 3. The last section is devoted to quantizing limit 
sketches logically. 

We close this introduction by reviewing some prerequisites and fixing 
notation and terminology. 

0.1. Set Theory 

Unless stated to the contrary, we will work within the Zermelo-Fraenkel 
set theory with the axiom of choice, for which the reader is referred to a 
standard textbook on set theory such as Jech (1978). The term "set" should 
be strictly distinguished from the term "class." An ordinal is regarded as the 
special set consisting exactly of all its preceding ordinals. Ordinals are denoted 
by ct, 13, 3', 8 . . . . .  The first infinite ordinal is denoted by o~. A cardinal is 
put down as a special kind of ordinal. The domain of a function f i s  denoted 
by dom(f). Such a notation as {x~}~E,~ is usually to be regarded as a function 
whose domain is ct and which assigns x~ to each 13 ~ ~t. However it is 
sometimes put down as the set whose elements are all xl~'s (13 e ct). An 
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infinite cardinal h is called regular if for any ot ~ h and any family {~/a}13~ 
with ~/~ E h for all 13 ~ ct, we have Up~,~ ~/~ ~ h. 

We assume also that there exists a set V closed under every fundamental 
set-theoretic operations. Such a set is called a universe, and its usage to 
dodge the famous paradoxes of set theory is a common practice in category 
theory. For the exact definition of a universe, the reader is referred to MacLane 
(1971, Chapter I, w Schubert (1972, w or Borceux (1994, Vol. 1, w 
Sets belonging to V are called small. The adjective "small" is applied to 
structures whose underlying sets are small. The category of small sets and 
small functions is denoted by Ens. 

0.2. Boolean Locales 

The category of small complete Boolean algebras and their complete 
Boolean homomorphisms is denoted by Bool. Its dual category is denoted 
by BLoc. The objects of BLoc are called Boolean locales and are denoted 
by X, Y, . . . .  The morphisms of BLoc are denoted by s g, . . . .  If a Boolean 
locale X is to be put down as an object of Bool, it is denoted by 9 ( X )  for 
emphasis, though X and ~ (X)  denote the same entity. The morphism of Bool 
corresponding to a morphism s X --> Y of BLoc is denoted byg*( f ) ,  while 
the right-adjoint o fg*( f ) :  ~(Y) --->9(X), whose existence is guaranteed by 
Theorem 2.1 of Nishimura (1993b), is denoted byg.( t ' ) .  A manual of  Boolean 
locales is a small subcategory of BLoc satisfying certain mild constraints, 
as was the case in a previous paper (Nishimura, 1995c). 

0.3. X-Sets and X-Sets 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. We will often write B forg(X) .  An X-se_j is a pair (U, ~- = �9 ~ )  of  a 
set U and a function [. = �9 ~ :  U x U --> B abiding by the following conditions: 

(0.3.1) Ix =y]lx v =  [[y = x ~  
(0.3.2) [Ix = y ~ A [ [ y  = z ~  < [ I x =  z ~  

for all x, y, z ~ U. We will often write [Ix = y]Lx, Ix = y]U, or simply Ix = y] 
for Ix = y]x v, unless confusion may arise. We will often write EVxx, EUx, 
Exx, or Ex for [Ix = xl]. An X-set (U, [[- = �9 ]]) is often represented simply 
by its underlying set U. Given X-sets (U, [[" = �9 ]u) and (V, I" = �9 iv), we 
write (U, ~- = "  l] u) Xx (V, [. = .  ~v) for the X-set (U •  V, ~. = .  ~UXxV), where: 

(0.3.3) U •  {(x,y) e U X  VIEUx= EVy}. 
(0.3.4) [[(x, y) = (x', y,)]VXxV = Ix = x' l  U ^ [y = y,l]v for all (x, y), 

(x', y ')  ~ U Xx V. 
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To make the set of  all small X-sets a category BEnsi(X) (i = 0, 1), we 
need to define a morphism from a small X-se__tt U to a small X-se__.t V, which 
is to be a function ~: U X V ~ B abiding by the fol lowing conditions: 

(0.3.5) Hx = x'] u ^ ~(x, y) <- 5(x', y) 
(0.3.6) ~(x, y) ^ [[y = y,]]v < ~(x, y ' )  
(0.3.7) ~(x, y)  ^ ~(x, y ' )  <- ~y = y,~V 
(0.3.8) Vy~v B(x, y) = Ex  

for all x, x '  �9 U and all y, y '  �9 V. 
Given an X-set  (U, [[" = �9 ]]), a function a:  U --> B is called a singleton 

if it satisfies the fol lowing conditions: 

(0.3.9) a(x)  ^ [Ix = y]] -< o~(y) 
(0.3.10) c~(x) ^ c~(y) --< I[x = y] 

for all x, y �9 U. It is easy to see that each x �9 U gives rise to a singleton 
{x} assigning to each y E U [Ix = y]] �9 B. The X-se___~t (U, ~" = �9 ]]) is called 
an X-set  if  every singleton is of  the form {x} for a unique x �9 U. We denote  
by BEns(X)  the full subcategory of  BEns(X)  whose  objects are all X-sets. 
As is discussed in Goldblatt  (1979, w 11.9 and w 14.7), the categories BEns (X)  
and BEns(X)  are toposes. As we have discussed in Nishimura (1995b, Theo-  
rem 1.2), there is a geometr ic  morphism (iBE,s[X], aBE,~[X]) from BEns(X)  
to BEns(X).  

Let U be a small X-set and V a small X-set. Then there is a natural 
bijection between the morphisms from U to V in BEns(X)  and the functions 
f: U ---> V yielding the following conditions: 

(0.3.11) Ix = y]]U <_ ~f(x) = f(y)~V 
(0.3.12) EVf(x) <-- EVx 

for all x, y �9 U. The  reader is referred to Goldblat t  (1979, w for the 
detailed construction o f  this well-known bijection. 

Let f: X_ -~ X+ be a morphism in BLoc .  Then the assignment 

(U, [~. = .]u) e Ob BEns(X+) ~ (U,9*( f ) ( [ [ .  = .]iv)) �9 Ob BEns (X_)  

naturally induces a functor  =f*: BEns(X+) ---> BEns(X_) ,  which in turns gives 
rise to functors 

f* = f .  o iSEns[X+]: BEns(X+) ---> BEns (X_)  

f* = aBEn~[X-] o f*: BEns(X+) ---> BEns (X_)  

On the other hand, the assignment 

(V, ~- = �9 iv) �9 Ob BEns (X  ) 

'-' aBEn~[X+](V,~.(t3([[" = "l IV)) �9 Ob BEns(X+) 
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naturally induces a functor f.: BEns(X_) --> BEns(X+). As we have discussed 
in Nishimura (1993b, w the pair (f., f*) forms a geometric morphism from 
BEns(X_) to Bens(X+), i.e., f* q f .  and f* is left-exact. Since the geometric 
morphism (f,, f*): BEns(X_) --~ BEns(X+) corresponds to the morphism 
f: X_ ---> X+ in BLoc under Theorem 2.6 of Nishimura (1993b) and f is open 
by Theorem 2.13 of Nishimura (1993b), the geometric morphism (f., f*) is 
essential due to Exercise 2.13.8 of Borceux (1994, Vol. 3) in the sense that 
f* has a left-adjoint fi: BEns(X_) --~ BEns(X+). In particular, the functor 
f*: BEns(X+) --~ BEns(X_) preserves not only arbitrary colimits, but also 
arbitrary limits by dint of Theorem 1 of MacLane (1971, Chapter V, w 

0.4. Two Transfer Principles 

Let X be a Boolean locale with B = ~(X).  As we have discussed in 
Nishimura (1993b), the topos BEns(X) is equivalent to the category of sets and 
functions within the Scott-Solovay universe V (a). As Jech ( 1978, Theorem 43) 
and others have discussed, the universe V (B) enjoys ZFC (Zermelo-Fraenkel 
set theory with the axiom of choice), which is the core principle of Boolean 
mathematics. For flourishing Boolean mathematics, the reader is referred, 
e.g., to Nishimura (1984, 1991, 1992, 1993a), Ozawa (1983, 1984, 1985), 
Smith (1984), and the Bible of Boolean mathematics, namely, Takeuti (1978). 
Since every branch of mathematics, ranging from algebraic geometry to 
functional analysis, is in principle to be developed within ZFC, the Scott- 
Solovay universe V (m and therefore its equivalent BEns(X) enjoy all classical 
mathematics (=mathematics based on classical logic). This transfer principle 
from standard mathematics to Boolean mathematics is designated the Zer- 
melo-Fraenkel transfer principle or ZFFP for short. The application of the 
transfer principle is usually denominated Booleanization. 

Let f: X_ --> X+ be a morphism of BLoc. Due to Theorem 2.13 of 
Nishimura (1993b), f is open, so that the geometric morphism (f., f*): 
BEns(X_) -~ BEns(X+) is also open by Proposition 2 of MacLane and 
Moerdijk (1992, Chapter IX, w This implies that every finitary first-order 
property holding in a (many-sorted) first-order structure 5~' in BEns(X+) 
persists in the derived first-order structure f*.~r in BEns(X_), as is claimed 
in Corollary 4 of MacLane and Moerdijk (1992, Chapter X, w This transfer 
principle is designated the first-order transfer principle or FOTP for short. 

0.5. X-Categories 

Let X be a Boolean locale. The interpretation of the notion of a category 
within the topos BEns(X) gives rise to that of a small X-category, as discussed 
in Nishimura (1995c, w 1). By way of example, the totality of BEns(Xp)'s [p 
E ~(X)]  lumps together to form an X-category ~ ' ~  (X), as dealt with in 
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Nishimura ( 1995c, Example 1.1). The reader is referred to Nishimura (1995c) 
for the details of the theory of X-categories. We use ~ x  for the natural X- 
isomorphism between X-functors. Given X-categories ~r and ~ ' ,  a partial 
X-functor from ~r to ~ '  is an Xp-functor from ~r to ~'[-p for some p 
~(X) .  The totality of partial X-functors from a small X-category, '  to~ ' , -~ (X) 
naturally forms an X-category to be denoted by ~ ' ~ , ~ ( J ) .  The canonical 
contravariant Yoneda embedding of ~r into ~ S ~ ' ( ~ r  is denoted by y. 
The Booleanizations of left adjoint and right adjoint functors, discussed in 
Nishimura (n.d.-a), are called left and right X-adjoints respectively. 

Let f: X_ ---> X+ be a morphism of Boolean locales. The notion of an 
X-functor was generalized in Nishimura (1995c, w to that of an f-functor 
from an X+-category ~§ to an X_-category ~'_. By way of example, the 
functors f*: BEns((X+)p) ---> BEns((X_)~o~p~) for all p ~ ~(X+) lump together 
to form an f-functor f~*~: ~'g',-~(X+) --> ~'~,-~(X_), where fp denotes the 
morphism of Boolean locales from (X_)~r to (X+)p naturally induced by 
f. The f-functor f*~,~ naturally induces such f-functors as f~*~,~, which was 
discussed amply Nishimura (1995c). Unless confusion may occur, the super- 
scripts in such notations as f~*z,~ and f.~.~, are often omitted, so that the 
notation f* enjoys a bit of polysemy. We use ~-~ for the natural f-isomorphism 
between X-functors. 

1. FIRST-ORDER STRUCTURES 

In this section we work within the universe V. This implies that a set 
means a small set unless stated to the contrary, h denotes a regular cardinal 
in this universe. 

This section is essentially a review. For infinitary logic the reader is 
referred to Dickmann (1975). For sketches and accessible categories the 
reader is referred to Adzimek and Rosicky (1994), Borceux (1994, Chapter 
6 of Vol. 1 and Chapter 5 of Vol. 2 in particular), and Makkai and Par~ (1989). 

1.1. Inf ini tary Logic 

An (infinitary many-sorted) formal language L is determined by three 
disjoint sets, namely, a set Lsor of sorts, a set Lrel of relation symbols, and a 
set Lope of operation symbols. Every relation symbol R is assigned its arity 
ari(R), which is a function from an ordinal ~ to L~or Similarly, every operation 
symbol ~ is assigned its arity ari(~) and its value sort v-sor(o). The former 
is a function from an ordinal c~ to Lso, while the latter is an element of Lsor 

We assume that an abundant supply of variables of each sort s is chosen 
and fixed. The notions of a term "r and its value sort v-sor('r) are defined 
simultaneously by induction as follows: 
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(1.1.1) Each variable x of sort s is a term of value sort s. 
(1.1.2) If ,, is an operation symbol of arity ~ and value sort s and if 

,re is a term of value sort ~(et) for each ot e dom(~), then the 
pair (,,, {O'ot}aedom(~)) is a term of value sort s. 

The notion of an atomic formula is defined as follows: 

(1.1.3) If R is a relation symbol of arity ~ and "re is a term of value 
sort ~(et) for each a ~ dom(~), then the pair (R, {'r,~},~dom(~)) 
is an atomic formula. 

(1. 1.4) If ,~ and "r are terms of the same value sort, then the triple (=,  
or, -r) is an atomic formula. 

The atomic formula (=,  ,r, -r) in (1.1.4) is often abbreviated to ~r = "r. 
The class of formulas is constructed from atomic formulas by using 

logical operators l (negation), ~ (implication), ^ (conjunction), v (disjunc- 
tion), V (universal quantifier), and 3 (existential quantifier). Exactly speaking, 
the notion of a formula q~ is defined inductively as follows: 

(1.1.5) An atomic formula is a formula. 
(1.1.6) If ~ is a formula, then the pair (-], ~) is also a formula. 
(1.1.7) If tp and 4 are formulas, then the triple (---~, go, 4) is also 

a formula. 
(1.1.8) If a is an ordinal and tpl3 is a formula for each 13 e or, then 

the pair (^, {~}13~) is a formula. 
(1.1.9) If ot is an ordinal and q~a is a formula for each 13 ~ or, then 

the pair (v, {cpl3}a~) is a formula. 
(1.1.10) If go is a formula, ot is an ordinal, and xa is a variable for each 

13 E a,  then the triple (V, {xa}a~, ~) is a formula. 
(1.1.11) If q0 is a formula, et is an ordinal, and xa is a variable for each 

13 E a,  then the triple (3, {xa}a~, go) is a formula. 

We will often write -]q0 and go ~ 4 for the formulas (-], go) in (I. 1.6) and 
(---~, cp, 4) in (1.1.7), respectively. The formulas (^, {q%}a~) in (1.1.8) 
and (v, {tpa}a~) in (1.1.9) are often abbreviated to ^a~,,Wa and v a ~ p a ,  
respectively, while the formulas (V, {xa}a~,~, go) in (1.1.10) and (3, {x13}~, 
go) in (1.1.11) are often designated (Vi3~xa)cp and (qa~,~xa)tp, respectively. 
The notation (q!a~xa)cp is an abbreviation of 

(3~x13)t p A (gO A tp({ y~/x~}f~) ---~ A ~ X ~  = y~) 

where y~ is a variable of the same sort as x~ not occurring in tp for each 
13 s c t  and go({ y~ /x~}~ )  denotes the formula obtained from go by replacing 
every free occurrence of xl3 by y~. 
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Now we define the set Var(-r) o f  free var iables  in a term "r by the 
construct ion of  "r as fol lows: 

(1.1.12) Var(x) = {x} for  each variable x. 
(1.1.13) I f  ,, is an operat ion symbol  of  arity ~ and ~ is a term o f  

value sort ~(a)  for  each a e dom(~),  then 

Var(<a, {q'a}otedom(~)>) = d{Var (Ta ) l a  ~ dom(~)} 

Now we define the set Var(q0) o f  free var iables  in a fo rmula  qo by the 
construct ion o f  q0 as follows: 

(1.1.14) I f  R is a relation symbol  of  arity ~ and "r,~ is a term o f  value 
sort ~(ot) for each a e dom(~),  then 

Var((R, {'r~,},~dom(~))) = U{Var( ' r , , ) la  ~ dom(~)} 

(1.1.15) I f  cr and "r are terms of  the same value sort, then 

Var( (= ,  o', 'r)) = Var(o') U Var('r) 

(1.1.16) I f  q~ is a formula,  then 

var(<], qo>) = var(m) 

(1.1.17) I f  qo and ~ are formulas ,  then 

Var((--->, qo, ~>) = Var(qo) U Var(~) 

(1.1.18) I f  ec is an ordinal and r is a fo rmula  for  each 13 ~ or, then 

Var((^,  { tp~ } ~ ~,,)) = U { Var(q%) 113 e ot } 

(1.1.19) I f  ot is an ordinal and tpp is a fo rmula  for  each 13 E or, then 

var(<v, {qo~}~) )  = u{var(qo~)113 ~ ~} 

(1.1.20) If  tp is a formula,  a is an ordinal, and xl~ is a variable for  each 
13 e a ,  then 

var(<v, {x~}~,,,  qo)) = var(qo) - {x~}~, ,  

(1.1.21) I f  qo is a formula,  ot is an ordinal, and x~ is a variable for each 
13 e or, then 

var(<3, { x ~ } ~ ,  go>) = var(qo) - { x ~ ) ~  

A formula  tp with Var(tp) = 4) is called a sentence. A set o f  sentences 
is called a theory. 

A structure A for a given formal  language L or s imply  an L-structure 
consists o f  the fol lowing three entities: 
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(1.1.22) An assignment to each sort s of a set As. 
(1.1.23) An assignment to each relation symbol R with arity ~ of a 

subset Ra of l-laedorn(~)A~(a). 
(I.I.24) An assignment to each operation symbol ,, with arity ~ and 

value sort s of a function "A from l'laEdom(~)A~(a) to A s. 

Given an L-structure A, an individual assignment is a function I from 
a set of variables such that whenever x is a variable of sort s and happens 
to be in dom(/), then l(x) E A,. The individual assignment I can be extended 
to all the terms -r with Var('r) C_ dom(/) on the construction of "r as follows: 

(1.1.25) If ,, is an operation symbol of arity ~ and value sort s, tr, is 
a term of value sort ~(ot) for each et a dom(~), and "r is of 
the form (,,, {Orot}otEdom(~)), then l('r) = aa({l(o'a)}). 

The basic Tarskian semantical notion ofA ~ q~[/] with Var(q~) C_C_ dom(/), 
which should read "the individual assignment I satisfies the formula q0 in the 
structure A," can be defined on the construction of q0 as follows: 

(1.1.26) a ~ (R, {'r~},,~dom(~))[/] iff {l('ra)}aedom(~ ) E R a ,  where ~ is 
the arity of R. 

(1.1.27) a ~ (=,  tr, "r)[/] iff l(~r) = l('r). 
(1.1.28) a ~ (7, ~p)[/] iff it is not the case that A ~ cp[/]. 
(1.1.29) a ~ (--->, q~, ~)[/] iff a ~ (7, cp)[/] or A ~ ~[/]. 
(1.1.30) A ~ (^, {cpl3}13~)[/] i f fA ~ tpl3[/] for all [3 ~ a.  
(1.1.31) a ~ (v, {q~13}13~,~)[/] i f f a  ~ q%[/] for some [3 e a. 
(1.1.32) A ~ ('v', {x~}13~ ,, tp)[/] i f f a  ~ q~[l'] for all extensions I' of 

I with {xl3}13~ C_ dom(l'). 
(1.1.33) A ~ (q, { x ~ ] ~ ,  ~)[/] i f f a  ~ q~[l'] for some extension I' of 

I with {xl3]13~,, C_ dom(l'). 

We note that if I and I' are individual assignments such that dom(/) and 
dom(l ')  contain Var(q0), and I and I' agree on Var(tp), then A ~ q~[/] iffA 
tp[I']. In particular, if q~ is a sentence, whether A ~ q~[/] or not is independent 
of I, so that we can safely define the semantical notion of A ~ tp, which 
should read "the sentence q~ is true in A" or "A is a model of tp," to be A 
q~[/] for some and therefore for all individual assignments I. If T is a theory 
and A ~ q~ for all tp e T, then A is called a model of T. 

Given two L-structures A and B, a homomorphism f from A to B is a 
family {f~}.~L~or of functions f~: As --) Bs yielding the following conditions: 

(1.1.34) For each operation symbol ~ with arity ~ and value sort s, 
we have 

,' B({ f~(,~)(x,~) },~ ~dom~)) = f~(" A(Ix,~ }~ ~ dom~))) 
for all {x~},~do~(~) ~ 1-Iaedom(~)A~(a) 
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(1.1.35) For each relation symbol R with arity 6, we have 

{~(~)(X,~)},~dom(~) E RB for all {x,~},~dom(~) ~ ga 

We denote by St r  L the category of all L-structures and homomorphisms. 
Given a theory T, its full subcategory of  models of T is denoted by Mod  T. 

A formula is called positive-existential if it is built up from atomic 
formulas with (repeated) use of the operators ^, v,  and 3. A sentence is 
called a basic sentence if it is of the form (Va~,~xa)(qo --~ ~) with positive- 
existential formulas q~ and t~. A sentence is called a limit sentence if it is of  
the form ('v'~E,~x~)(~0 ~ ( 3 ! ~ x ~ ) ~ )  with tp and ~ being conjunctions of  
atomic formulas. A sentence is called equational if it is of  the form (Vi3E~xl3)(tr 
= "r) with terms tr and "r. A theory is called basic (limit, equational, resp.) 
if it consists only of basic (limit, equational, resp.) sentences. As was claimed 
by Makkai and Par6 (1989, Proposition 3.2.8), we do not lose generality 
considerably even if we restrict consideration to basic theories. 

Up to now we have discussed what is called the o~-logic. We conclude 
this subsection by discussing how to modify the above discussion so as to 
get what is called the h-logic. In particular, if h = co, then we will get the 
f initary logic. 

A formal language L is called a h-formal language if dom(ari(R)) < h 
for any R e Lrel and dom(ari ,,)) < h for any o ~ Lope. Now we let L be a 
h-formal language. By restricting ot < h in (1.1.8)-(1.1.10) in the above 
inductive definition of  formulas, we get the notion of  a h-formula. A h- 
formula tp with Var(qo) = ~b is called a h-sentence. A theory T over a h- 
formal language L is called a h-theory if it consists only of  h-sentences. 

1.2. Sketch 

The notion of a sketch was introduced by Ehresmann (1968) and its 
theory has been developed by his French school. Formally speaking, a sketch 
is a triple (S, L, C) of  a small category S, a set L of  cones in S, and a set 
C of cocones in S. Given two sketches (S, L, C) and (S',  L ' ,  C'),  a sketch 
map from (S, L, C) to (S',  L ' ,  C')  is a functor F: S ~ S' mapping cones 
in L into L' and cocones in C into C'.  The category of  sketches and sketch 
maps is denoted by Sketch.  A model of a sketch (S, L, C) is a functor from 
S to the category of sets and functions mapping cones in L into limiting 
cones and cocones in C into colimiting cocones. The category of models of 
a sketch (S, L, C) and natural transformations is denoted by Mod(S, L, C). 

A sketch (S, L, C) is called a limit sketch if C = ~b, in which it is 
natural to denote it simply by (S, L). A limit sketch (S, L) is called a h-limit 
sketch if the size of each cone in L is less than h. A limit sketch (S, L) is 
called a finite-product sketch if every cone in L is a cone over a finite 
discrete diagram. 
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The relationship between sketches and the oo-logic is elementary and 
fundamental. 

Theorem 1.2.1. For any sketch (S, L, C), there exists a formal language 
L and a basic theory T over L such that the category Mod(S, L, C) is 
equivalent to the category Mod T. Conversely, for any basic theory T over 
a formal language L, there exists a sketch (S, L, C) such that the category 
Mod T is equivalent to the category Mod(S, L, C). 

By way of example, since the theory of fields is basic [cf. Adfimek and 
Rosicky (1994), Example 5.32.(5)], the category of fields and homomor- 
phisms is equivalent to Mod(S, L, C) for some sketch (S, L, C). The details 
of such a sketch (S, L, C) are given in Barr and Wells (1990, w For the 
proof of the above theorem, the reader is referred to Makkai and Par6 (1989, 
Theorem 3.2.1 ). 

The proof of Theorem 1.2.1 can be modified readily to yield some other 
duality theorems between well-behaved classes of sketches and corresponding 
sublogics of the oo-logic. In particular, we have the following: 

Theorem 1.2.2. A category A is equivalent to Mod(S, L) for some h- 
limit sketch (S, L) iff it is equivalent to Mod T for some limit h-theory T. 

By way of example, since the theory of partially ordered sets is an to-limit 
theory, the category of partially ordered sets and order-preserving functions is 
equivalent to Mod(S, L) for some to-limit sketch (S, L). For the details of 
such (S, L), the reader is referred to Ad~imek and Rosicky (1994), Example 
1.50.(5). Another interesting example of t~-limit sketch is what is called a 
site of Grothendieck, whose models as well as natural transformations among 
them constitute its Grothendieck topos. 

Theorem 1.2.3. A category A is equivalent to Mod(S, L) for some finite- 
product sketch (S, L) iff it is equivalent to Mod T for some equational to- 
theory T. 

By way of example, the finite-product sketch for the theory of semigroups 
can be seen in Barr and Wells (1990, w 

The last theorem was the motif of Lawvere's (1963) dissertation, which 
first dealt with functorial semantics of algebraic theories, shedding new light 
upon what is called universal algebra and paving the way to the sketches 
already discussed and to accessible categories, which are discussed next. 

1.3. Accessible Categories 

The duality between sketches and the ~-logic can be extended to the 
trinity among the above two and accessible categories. The notion of an 
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accessible category was introduced by Lair (1981) under the name "catrgorie 
modelable" so as to characterize sketches in the spirit of Gabriel and 
Ulmer (1971). 

An object A of a category A is called k-presentable if the representable 
functor A(A, ?): A -4 Ens preserves h-filtered colimits existing in A. A 
category A is called h-accessible if it is subject to the following conditions: 

(1.3.1) 
(1.3.2) 

A has h-filtered colimits. 
There exists a small full subcategory B of A consisting of k- 
representable objects such that every object of A is a h-filtered 
colimit of a diagram of objects in B. 

A category A is called accessible if it is h-accessible for some regular 
cardinal k. As is well known, every poset P can be regarded as a category 
in which there exists at most one arrow from p to q for any ordered pair (p, 
q) of elements of P. In this light oJ-accessible posets are exactly Scott domains, 
for which the reader is referred to Ad~imek and Rosicky (1994), Example 
2.3.(2). Another interesting example of accessible category is the category 
Hilb of Hilbert spaces and contractions, for which the reader is referred to 
Makkai and Par6 (1989, Proposition 3.4.2). 

Theorem 1.3.1. A category is accessible iff it is equivalent to Mod(S, 
L, C) for some sketch (S, L, C). 

For the proof of the above theorem the reader is referred to Makkai and 
Par6 (1989, Theorems 3.3.4 and 4.3.2). 

A h-accessible category is called locally h-presentable if it is cocomplete. 
A category is called locally presentable if it is locally h-presentable for some 
regular cardinal k. In the above light of posets as categories, locally to- 
presentable posets are exactly algebraic lattices. We note in passing that a 
locally h-presentable category can be defined as a complete h-accessible 
category, for which the reader is referred to Borceux (1994, Vol. 2, Theo- 
rem 5.5.8). 

Theorem 1.3.2. A category is locally k-presentable iff it is equivalent 
to Mod(S, L) for some k-limit sketch (S, L). 

For the proof of the above theorem the reader is referred to Ad~nek 
and Rosicky (1994, Theorem 5.30). 

1.4. Limit Sketches 

Since we are concerned with logical quantizations of limit sketches, it 
is natural to conclude this section with a brief treatment of limit sketches. 
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Let (S, L) be a limit sketch. We often denote Mod(S, L) by Sh(S, L), 
while the category of functors from S to Ens and natural transformations is 
often denoted by PreSh(S). 

Theorem 1.4.1. Let (S, L) be a limit sketch. Then the inclusion functor 
iL: Sh(S, L) ~ PreSh(S) has a left adjoint aL: PreSh(S) ~ Sh(S, L) such 
that it is the identity functor on Sh(S, L) (i.e., aL o iL = iL). 

For the proof of the above theorem, the reader is referred to Ad~imek 
and Rosicky (1994), Example 1.33.(8) and Theorem 1.39. 

The following is an example of Kan extensions. 

Theorem 1.4.2. Let q0: S+ ~ S_ be a functor of small categories. Then 
the induced functor tp,: PreSh(S_) ---> PreSh(S§ has a left adjoint q~*: 
PreSh(S+) ~ PreSh(S_). 

For the proof of the above theorem, the reader is referred to MacLane 
(1971, Chapter X, w Theorem 1). 

Theorem 1.4.3. Let q~: (S+, L§ ~ (S_, L_) be a sketch map. Since the 
functor qo,: PreSh(S_) ---> PreSh(S+) maps Sh(S_, L_) into Sh(S§ L§ it 
induces a functor r  Sh(S_, L_) --> Sh(S+, L+) with Cp, = aL§ ~ q0, o 
iL_. The functor r = aL_ o q~* o iL§ is left adjoint to r  

Proof. For any x E Ob Sh(S+, L§ and y ~ Ob Sh(S_, L_), we have 

Sh(S_, L_)(r y) 

= Sh(S_, L-)((aL_ o tp* o iL+)X, y) 

S_((~p* o iL§ iL_y) (Theorem 1.4.1) 

S+(iL+x, (q~, ~ iL_)y) (Theorem 1.4.2) 

-- Sh(S+, L+)(x, (aL§ o tp, o iL_)y) (Theorem 1.4.1) 

= Sh(S+, L+)(x, r  

Therefore r -t r  �9 

Theorem 1.4.4. Let tp: (Sl, L 0  --~ (S2, L2) and 4: (S2, L2) ---> (S3, L3) 
be sketch maps. Let X = ~ ~ q0. Then the functors ~* and t~* o r are 
naturally isomorphic. 

Proof. It is obvious that ~ ,  = ~ ,  otb, .  Since ~* is left adjoint to ~ ,  
and ~* o r is left adjoint to Cp, o t~, by Theorem 1.4.3, the functors ~* and 
t~* o r should be naturally isomorphic by MacLane (1971, Chapter IV, 
Corollary 1 of Theorem 2). 
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Theorem 1.4.5. Let 0: (S+, L+) --> (S_, L_) be a sketch map. Then the 
functors aL_ ~ 0* and aL_ o 0* oiL+ o at+ from PreSh(S+) to Sh(S_, L_) 
are naturally isomorphic. 

Proof By taking 0: (S+, L+) ---) (S_, L_) for ~: ($2, L2) ---) (S3, L3) in 
Theorem 1.4.4 and taking the identity functor of S+, regarded as a sketch 
map from (S+, ~b) into (S+, L+), for q~: (St, L~) ---) ($2, Lz) in Theorem 1.4.4, 
we get the desired result. �9 

2. BOOLEAN LIMIT SKETCHES 

Let X be a Boolean locale, which shall be fixed throughout this section. 
An X-limit X-sketch or simply an X-sketch is a pair ~ ,  ~ of a small X- 
category ~ and an X-set of X-cones in ~ .  Given an X-sketch ~ , . ~ ) ,  the 
full X-subcategory of ~'~,~sX(Y) whose objects are all partial X-functors 9-  
from~,~to~W,~ mapping X-cones in _o~[-E W-into X-limits in ~'~,~ is denoted 
by ~ ' ~ ( ~ , _ ~  or .g~/x~,.S'~). Given X-sketches (Y_,.~_) and (~+,.~+), an 
X-sketch X-map from (Y+,.~+) to (~_,.~_) is an X-functor fromS~ to~9 ~_ 
mapping X-cones in .~+ into X-cones in _~_. We denote by BSketch(X) the 
category of X-sketches and X-sketch X-maps. As in Example 1.1 of Nishimura 
(1995c), the totality of BSketch(Xp)'s [p ~ ~(X)] constitutes an X-category 
to be denoted by ~ ' ~ t o ( ( X ) .  

By simply Booleanizing Theorem 1.4.1, we have the following result. 

Theorem 2.1. Let ~ , _ ~  be an X-sketch. Then the inclusion X-functor 
~,: ~'S~(~,..~) --> ~ 9 , ~ ' ( 5 ~  has a left X-adjointa~ ~ e ,  Sff(5~ ---> ~ ( 5  a, 
. ~  such that it is the identity X-functor on ~5~(5~  (i.e.,a_w o,]w = ,~). 

By simply Booleanizing Theorem 1.4.2, we have the following result. 

Theorem 2.2. Let tp:SP+ --->~'_ be a functor of small X-categories. Then 
the induced X-functor ~p,: ~ , ~ ( _ , w _ )  ___> ~ ,~ ,~(_~+)  has a left X-adjoint 
~*: ~ r  ~ ~'~,~,S~(Y_). 

By simply Booleanizing Theorem 1.4.5, we have the following result. 

Theorem 2.3. Let q0: (_~'+, .~+) --~ (5~_,.Z~_) be an X-sketch X-map. Then 
the X-functors ,,~_ o q~* and ,~_~_ o tp* o ,~+ o a~+ from ~q~,SqtGc~ to 
~'54/'(_W_,s162 are naturally X-isomorphic. 

3, RELATIONS BETWEEN TWO BOOLEAN LIMIT SKETCHES 

Let f: X_ ---> X+ be a morphism of BLoc, which shall be fixed throughout 
this section. 
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Theorem 3.1. Given small X,--sets ~_+, there is a bijection between the 
f-functions from ~+ to ~v'_ and the X-functions from f'T+ to 7/_. 

Proof. It is easy to see that there is a bijection between the f-functions 
from ~+ to ~_ and the morphisms from _f*~+ to ~'_ in the category BEns(X). 
The celebrated adjunction from BEns.(X) to BEns(X) discussed in Nishimura 
(1995b, Theorem 1.2) gives a bijection 

BEns(X)(_f*T+, 7/'_) -~ BEns(X)(f*~+, ~v-_) 

Therefore the desired conclusion follows. �9 

By the same token, we have the following result. 

Theorem 3.2. Given small X_,--categories ~'_+, there is a bijection between 
the f-functions from ~'+ to ~_ and the X_-functors from f*~+ to ~_. 

The X_-functor corresponding to an f-functor~: ~§ ---> ~_ in the above 
theorem is denoted by 3-x~ while the f-functor corresponding to an X_- 
functor W: f*~'+ ---> ~_ under the above theorem is denoted by W~. 

It is easy to see the following result. 

Lemma 3.3. For any f-functor ~:  ~+ --~ ~_, any X+-functorZ'~:..~§ 
~+, and any X_-functor ,Z(: ~_ ---> ~ _ ,  we have (~  o ~'o,,~)x_ = ~ o 
9-x_ o f*X. 

Example 3.4. Let ~'§ be a small X+-category. The assignment 

,Vf ~ Ob~'9~.._9~(X+; ~+) ,--, f*,X( ~ O b , . ~ _ ~ f ( X _ ;  f'W+) 

naturally induces an f-functor, which is to be denoted by f~,~,.y,r[W+]- For any 
x ~ Ob W such that E ~ = E x ,  (f**.~.~,~r[W+]~)(f*x) = f*(X(x). 

Theorem 3.5. In the above example, the f-functor f~.Jx[W+] maps small 
X+-colimits to X_-colimits and maps small X+-limits to X_-limits. 

Proof. The Booleanization of Schubert (1972, Item 8.5.1) guarantees 
that X+-colimits in ,%'~,,,_,~ W+) and X_-colimits in ~'~,~qff(X_; f'W+) 
can be computed componentwise. Since f*~z~, maps small X+-colimits to X_- 
colimits, the desired first half of the theorem follows. The remaining half of 
the theorem can be dealt with similarly. 

Theorem 3.6. Let ,~- be a contravariant f-functor from a small X+- 
category ,W+ to a small-X_-complete X_-category-,q_. Then there is, up to 
natural f-isomorphisms, a unique f-functor ~':~'~,c~(X+; W+) --)~_ mapping 
small X+-colimits to X_-colimits and making the following diagram 
commutative: 
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Proof The uniqueness part is obvious, since every object of ~'9,-e.S~(X_~; 
~§ is an X+-colimit of the image of a small partial X+-diagram in ~§ under 
the Yoneda embedding y. By Booleanizing MacLane and Moerdijk (1992), 
Chapter I, w Corollary 4 of Theorem 2, we can see that there is an X_- 
functorYfpreserving small X_-colimits and making the diagram 

~ ' ~ ( x _ ;  ~*~"+) ) ~_ 

f*~'+ 

commutative. The desired ~' can be obtained as,,~o f~*~._~r[~'§ �9 

Theorem 3.7. Let 5 ~- be an f-functor from a small X+-category ~ to a 
small X_-category ~'_. Then there is, up to natural f-isomorphisms, a unique 
f-functor 

"rr*[Sr]: ~ ( X + ;  ~'.) ~ '9 ,~S~(X_;  7~_) 

mapping small X+-colimits to X_-colimits and making the following dia- 
gram commutative: 

~r*[Yl 

K ~- >Y- 

Proof Take~9,~.S~(X_; ~_) for ~ _  and y* o ~.. W§ --) ~'~_-_gX(X_, 
W_) for~:  W§ ---) ~ _  in the above theorem. �9 

Theorem 3.8. Let g: Xl ---) X2 and h: X2 ---) X3 be morphisms of BLoc. 
Let ~': ~z ---) ~l be a small g-functor and X :  ~'3 ---) ~2 a small h-functor. 
Then the h o g-functors -rr*[g e o ~/'~] and "rr*[~'] o "rr*[,,~] from ~ ' ~ - ~ ( X 3 ;  
~'3) t o ~ ' ~ S ~ ( X l ;  ~1) are naturally h o g-isomorphic. 

Proof Consider the following diagram: 
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~ . ~ ( x 3 ;  ~ )  w*[~/] ~*[~] 

Y l  Y I Y "  

The commutativity of the two inner squares implies the commutativity of 
the outer rectangle, so that 

"rr*[ff o~r'] ~o~ "rr*[~'] o ~*[,,~',r 

as was desired. �9 

Let (~• ..~• be X• An f-functor ~." ~+ --4 ~'_ is called an 
f-sketch f-map if 3-maps every X+-cone in 2+  into X_-cones in.~_. Each 
sketch f-map ~." (~+,_~+) ---) (ff_,Sa_) gives rise to its associated f-functor 

,~_ o ~r*[~-] o,~+:~'S~(X+; ~+,2+)  ~ ' S ~ ( X _ ;  ~_, .~_) 

to be denoted by 'rr*[.~, (~+,.~+), ~q"-,.~-)l or 'rr*[~,.~+,.~_]. Theorem 3.2 
is a variant of the following. 

Theorem 3.9. Given Xz-sketches ~. , . .~=),  an f-functor ~--:.'S'~+ --)~'_ is 
an f-sketch f-map from ~q'%.~+) to (..~'_,_oq~_) iff the X_-functorSrx_: f*SP+ 

S"_ is an X_-sketch X_-map from (f*S'~+, f*.~+) to ~_,.s 

Let ~." (~+,.~+) ---) (~'_,S'L) be an f-sketch f-map. By FOTP it is easy 
to see the following result. 

Lemma 3.10. The X_-category f * ~ ' ~ ( X + ;  ~+) can naturally be put 
down as an X_-subcategory of X_-category ~'.~,r162 ~_)  with a natu- 
ral injection 

and the following diagram is commutative up to natural X_-isomorphisms: 

�9 r* [~"  x ] ~'~'ed';C(x_; ~_) < ~ . e d a ' ( x  ; f*~"§ 

T s [~'+l 

f *..~,,..~,.., c,.~ (x+; ~'.) 

The pair (f*~§ f*_~§ is an X_-sketch, for which we have the follow- 
ing result. 
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Lemma 3.11. The X_-category f*~'S')~(X+; ~'§ can naturally be put 
down as an X_-subcategory of the X_-category~'Sff(X_;  f*~+, f*.2~§ with 
a natural injection 

, [~+,~+]: f*~'Sc(x+; fr ~ ' s r  f*~'§ f*_~+) 

and the following diagram is commutative up to natural X_-isomorphisms: 

.~sct'(x_; t*~'§ t*~§ ( .~'6~.~,~)t'(x_; t*~',) 

'I 1 J [ ~ ,  2 '3  J [~'.1 

f * ~ ( x . ;  ~'§ _~+) ( f*~'~.,~sg~'(x+; ~'.) 
f ~ §  

Proof. We can use a Booleanized version of  the colimit construction of  
Borceux (1994, Vol. 1, Theorem 6.2.5) for computing a l+  and at,_~+. Thus 
the desired result follows readily from Theorem 3.5. �9 

The proof of the above lemma shows also the following result. 

Lemma 3.12. The following diagram is commutative up to natural 
X_-isomorphisms: 

t r 
~ . ~  ~J~t'(x_; t*~'.) < ~5~(x_;  f*~'§ f*~.)  

Theorem 3.13. The f-functors a~_ o 7r*[Sr] and aze_ o .rr*[j~-] o 
,~+ o,~_~§ from ,.q~cff(X_; ~_ ,  .~_) is ,.~'Sff(X_; ~_ ,  .~_) are naturally f- 
isomorphic. 

Proof Due to Theorem 3.2, it suffices to show that X_-functors (a:e_ 
~ "tr*[-~-])x_ and (a~_ o ~r*[9-] o,2e§ ~ ,~+)x_ are naturally X_-isomorphic. 
Due to Lemma 3.3 we have (a_~_ o "rr*[.~-])x_ = a_~_ o "rr*[.~-]x_ and 



Logical Quantizations of First-Order Structures 513 

(a-w_ o "rr*[Y-] o,~,+ ~ = a-w_ o "rr*[Sr]x_ o f*(a-w+ o,:~+) 

= a.~_ o "rr*[Y-]x_ ~ f*,~,,+ o [*a~+ 

Since 9-x_: f*~'+ ---> ~ ' -  is X_-lef t -exact  with f*~'+ being X_-fini tely X_-  
complete,  

~ [~ x_ ]  = ( 'u,[9-x_], ~r*[Y-x_]) : ,~ '~ ,~,~(X-;  ~ ' - )  - - ->~ '~ ,~ ,~(X_;  f*~+)  

is an X_-geometr ic  morphism. Therefore  Theorem 2.3 guarantees that X_-  
functors aze_ o "u*[9-x_] o,-f.~+ Oa~.-w+ anda-w_ o "rr*[~-x_] are naturally X_-  
isomorphic.  Therefore we have 

a w_ o ,n-*[9-]x - o f*,~,,+ o f*a_w+ 

~ x -  a-w_ o "u*[Srx_] o ~ [~+] o f*~z,'+ o f'a-w+ (Lemma 3.10) 

~x_a-w_ o "rr*[Y-x_] ~ ,f.~+ ~ J [~+,-~+] o f*a~+ (Lemma 3.12) 

~x_aze_ o 'rr*[Jx_] ~ &*t+ o ar,_~ + o j [~+]  (Lemma 3.11) 

~ x _  a-w_ o 1T*[SrX_] o j [.~+] (Theorem 2.3) 

= x _ a ~ _  ~ "rr*[3-]x_ (Lemma 3.10) 

Thus the desired result follows at once. �9 

Theorem 3.14. Let g: X~ --> X2 and h: X2 --> X3 be morphisms of  BLoc .  
Let ~ :  (~2,..~2) ~ ( f f l ,S ' ] )  be a g-sketch g-map a n d X :  (~3,-~3) --> (~2,-~2) 
be an h-sketch h-map.  Then the h o g functors "rr*[g e o,,~;.~3,.~1] and "rr*[,~; 

�9 "~2, "~1] o -'IT*[cq~; *~3, *'~2] from ~.~z~e(X3; ~3,  -~3) to ~ - ~ ( X l ;  ~'~, - ~ )  are 
naturally h o g-isomorphic. 

Proof It suffices to note that 

r _~w~, _~1 o r  ~ 3 ,  -~21 

= a ~  o "rr*[~] o,:z2 o a .~  o "rr* [g<] o,~3 

~o~a~,~ o "tr*[ff] o ~ * [ ~ ]  0,2,, 3 (Theorem 3.13) 

--~ho~a~ o 'rr*[~' o~,'] o,2e 3 (Theorem 3.8) 

= "rr*[~' o ~ ;  -~3, ~ ]  �9 

4. Q U A N T I Z E D  L I M I T  S K E T C H E S  

Let us introduce the category to be denoted by BCat .  Its objects are all 
pairs (X, ~/) o f  a Boolean locale X and a small X-category J~'. A morphism 
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from (X, ~ to (Y, ~ ' )  in BCat  is a pair (f, 9-) of a morphism f: X ---> Y in 
BLoc and an f-functor ~." ~ '  ~ ~r The composition (g, W) o (f, 9-) of 
morphisms (f, 5r): (X,~ r ~ (Y,~') and (g, ~e): (y,~,)  __~ (Z, W) is defined 
to be (g o f, 3-0 W). The category BCat  has small coproducts, with respect 
to which the category BCat  can and shall be put down as an orthogonal 
category. The assignments (X,2~/) ~ 0 b  BCat  ~ X E 0b  BLoc and (f ,9-)  
E Mor BCat  ~ f ~ Mor BLoc constitute a functor to be denoted by 0BLo~. 

We now introduce a category to be denoted by BObj. Its objects are 
all triples (X, ~',  a) such that (X, ~ ~ 0b  BCat  and a is a total object of 
the X-category ~r A morphism from (X, ~r a) to (X, ~ ' ,  b) in BObj is a 
triple (f, ~ , , / )  such that (f, 9-) is a morphism from (X,~0 to (Y,~') in the 
category BCat  a n d / i s  a total morphism from ~-b to a in the X-category.~'. 
The composition (g, ge, ,g ) o (f, y ,  / )  of (f, Y,, / ' ) :  (X, ~r a) ---> (Y, ~.~, b) 
and (g, ~',~ ): (~, ~ ' ,  b) ~ (Z, W, c) in BObj is defined to be (g o f, 9-  o W, 
/ o  @) .  It is easy to see that the category BObj has small coproducts, with 
respect to which BObj can and shall be put down as an orthogonal category. 
The assignments 

(X,~r a) ~ 0b  BObj ,-, (X,~r  ~ 0 b  B C a t  

(f, ~,, , ~  ~ Ob BObj ~ (f, 9 - )  ~ Mor B C a t  

constitute a functor from the category BObj to the category BCat  to be 
denoted by 0BCat. 

Let A be a manual of Boolean locales, which shall be fixed throughout 
the rest of this section. An empirical framework over/d! is a functor ~ from 

A to BCat  subject to the following conditions: 

(4.1) It maps orthogonal A-sum diagrams to orthogonal sum diagrams 
in BCat. 

(4.2) 0BLo r o Of' is the identity functor of A into BLoc. 

For an empirical framework �9 over A ,  we denote by ~ ,  the function 
with the same domain of �9 such that ~(X) = (X, ~r~,(X)) for each X 
O b A  and ~(f)  = (f, ~,e,,(f)) for each f E Mor A .  

Example 4.1. For each f: X_ --~ X+ ~ Mor A ,  the assignment 

(~,s ~ 0 b ~ ' ~ t ~ C ( X . )  ~ (f*~, f*S '~) ~ 0b~'d'~t~C(X_) 

naturally induces an f-functor from ~.~S~t~r to ~'S'~t~C(X_) to be 
denoted by s ,~,~z. The assignments X ~ 0 b A  ~ (X, ~q~d~t~,C(X)) and f 
M o r A  ~ (f, s constitute an empirical framework overA to be denoted 
by ~ f e t c D .  
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Given an empirical framework (I) over -4r we now introduce a category 
to be denoted by EObj((I)). Its objects are all functors ~ from ~ to BObj  
abiding by the following conditions: 

(4.3) It maps orthogonal~C'-sum diagrams in .r162 to orthogonal sum 
diagrams in BObj.  

(4.4) OBcat o ~ = (I). 

Given such a functor ~: ,,r BObj ,  we denote by ~,~ the function 
with the same domain of ~ such that the value of ~r (?) is the third component 
of the triple ~?.  A morphism from ~ to 05 in EObj(cl)) is an assignment 
to each X ~ Ob ~e" of a total morphism ~x: ~e~ (X) ---> ~ ,x  (Y) satisfying 
the following condition: 

(4.5) The diagram 

~.(0 
(D Jf)(r ) r (X) 

�9 ~,(f)((~.(Y)) > (~, .(X) 

~x 

is commutative for every f: X ---> Y~ Mor ~r 

The composition "q o ~ of morphisms ~: ~ ---> (~3 and ~1:(S3 ---> ~) in 
EObj((I)) is defined to be the assignment X ~ Ob .4~" ~ ~x ~ ~x- 

Example 4.2. An object of E O b j ( ~ c t c b )  is called an empirical sketch 
over~. 

An empirical sketch ~ over J/g" shall be fixed throughout the rest of 
this section. 

Example 4.3. The assignments X E Ob ~"  ~ (X, ...//_~e'x ~ (X)) and 

f: X_ ---> X+ ~ Mor ~" ~ (f, 7r*['~,~ (f)f; ~ (X+), ~r4  (X-)]) 

constitute an empirical framework over ~ '  to be denoted by ~)2ob ~ .  
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